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PREFACE

In writing the eighth edition of Molecular Cell Biology, we 
have incorporated many of the spectacular advances made 
over the past four years in biomedical science, driven in part 
by new experimental technologies that have revolutionized 
many felds. Fast techniques for sequencing DNA, allied 
with effcient methods to generate and study mutations in 
model organisms and to map disease-causing mutations in 
humans, have illuminated a basic understanding of the func-
tions of many cellular components, including hundreds of 
human genes that affect diseases such as diabetes and cancer. 

For example, advances in genomics and bioinformat-
ics have uncovered thousands of novel long noncoding 
RNAs that regulate gene expression, and have generated 
insights into and potential therapies for many human dis-
eases.  Powerful genome editing technologies have led to an 
unprecedented understanding of gene regulation and func-
tion in many types of living organisms. Advances in mass 
spectrometry and cryoelectron microscopy have enabled 
dynamic cell processes to be visualized in spectacular de-
tail, providing deep insight into both the structure and the 
function of biological molecules, post-translational modif-
cations,  multiprotein complexes, and organelles. Studies of 
specifc nerve cells in live organisms have been advanced by 
optogenetic technologies. Advances in stem-cell technology 
have come from studies of the role of stem cells in plant 
 development and of regeneration in planaria.

Exploring the most current developments in the feld is 
always a priority in writing a new edition, but it is also im-
portant to us to communicate the basics of cell biology clear-
ly by stripping away as much extraneous detail as possible to 
focus attention on the fundamental concepts of cell biology. 
To this end, in addition to introducing new discoveries and 
technologies, we have streamlined and reorganized several 
chapters to clarify processes and concepts for students.

New Co-Author, Kelsey C. Martin

The new edition of MCB introduces a new member to our 
author team, leading neuroscience researcher and edu-
cator Kelsey C. Martin of the University of California,  
Los Angeles. Dr. Martin is Professor of Biological Chemis-
try and Psychiatry and interim Dean of the David Geffen 
School of Medicine at UCLA. Her laboratory uses Aply-
sia and mouse models to understand the cell and molecu-
lar biology of long-term memory formation. Her group 
has made important contributions to elucidating the mo-
lecular and cell biological mechanisms by which experience 
changes connections between neurons in the brain to store  
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long-term memories—a process known as synaptic plasticity. 
Dr. Martin received her undergraduate degree in English and 
American Language and Literature at Harvard University. 
After serving as a Peace Corps volunteer in the Democratic 
Republic of the Congo, she earned an MD and PhD at Yale 
University. She teaches basic neurobiology to undergraduate, 
graduate, dental, and medical students.

Revised, Cutting-Edge Content

The eighth edition of Molecular Cell Biology includes new 
and improved chapters:

 “Molecules, Cells, and Model Organisms” (Chapter 1) is an 
improved and expanded introduction to cell biology. It retains 
the overviews of evolution, molecules, different forms of life, 
and model organisms used to study cell biology found in previ-
ous editions. In this edition, it also includes a survey of eukary-
otic organelles, which was previously found in Chapter 9. 

 “Culturing and Visualizing Cells” (Chapter 4) has been 
moved forward (previously Chapter 9) as the techniques 
used to study cells become ever more important. Light-sheet 
microscopy, super-resolution microscopy, and two-photon 
excitation microscopy have been added to bring this chapter 
up to date.

 All aspects of mitochondrial and chloroplast structure 
and function have been collected in “Cellular Energetics” 
(Chapter 12). This chapter now begins with the structure 
of the mitochondrion, including its endosymbiotic origin 
and organelle genome (previously in Chapter 6). The chap-
ter now discusses the role of mitochondria-associated mem-
branes (MAMs) and communication between mitochondria 
and the rest of the cell. 

 Cell signaling has been reframed to improve student 
 accessibility. “Signal Transduction and G Protein–Coupled 
Receptors” (Chapter 15) begins with an overview of the con-
cepts of cell signaling and methods for studying it, followed 
by examples of G protein–coupled receptors performing 
multiple roles in different cells. “Signaling Pathways That 
Control Gene Expression” (Chapter 16) now focuses on 
gene expression, beginning with a new discussion of Smads. 
Further examples cover the major signaling pathways that 
students will encounter in cellular metabolism, protein deg-
radation, and cellular differentiation. Of particular interest 
is a new section on Wnt and Notch signaling pathways con-
trolling stem-cell differentiation in planaria. The chapter 
ends by describing how signaling pathways are integrated 
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to form a cellular response in insulin and glucagon control 
of glucose metabolism.

 Our new co-author, Kelsey C. Martin, has  extensively 
 revised and updated “Cells of the Nervous System” 
( Chapter  22) to include several new developments in the 
field. Optogenetics, a technique that uses channelrhodop-
sins and light to perturb the membrane potential of a cell, 
can be used in live animals to link neural pathways with 
behavior. The formation and pruning of neural pathways 
in the central nervous system is under active investigation, 
and a new  discussion of signals that govern these processes 
focuses on the cell-cell contacts involved. This discussion 
leads to an entirely new section on learning and memory, 
which explores the signals and molecular mechanisms 
 underlying synaptic plasticity.

Increased Clarity, Improved Pedagogy

As experienced teachers of both undergraduate and gradu-
ate students, we are always striving to improve student un-
derstanding. Being able to visualize a molecule in action 
can have a profound effect on a student’s grasp of the mo-
lecular processes within a cell. With this in mind, we have 
 updated many of the molecular models for increased clarity 
and added models where they can deepen student under-
standing. From the precise ft required for tRNA charging, 
to the conservation of ribosome structure, to the dynamic 
strength of tropomyosin and troponin in muscle contraction, 
these fgures communicate the complex details of molecu-
lar structure that cannot be conveyed in schematic diagrams 
alone. In conjunction with these new models, their schematic 
icons have been revised to more accurately represent them, 
 allowing students a smooth transition between the molecu-
lar  details of a structure and its function in the cell.

New Discoveries, New Methodologies

 Model organisms Chlamydomonas reinhardtii (for study 
of flagella, chloroplast formation, photosynthesis, and 
 phototaxis) and Plasmodium falciparum (novel organelles 
and a complex life cycle) (Ch. 1)

 Intrinsically disordered proteins (Ch. 3)

 Chaperone-guided folding and updated chaperone 
 structures (Ch. 3)

 Unfolded proteins and the amyloid state and disease  
(Ch. 3)

 Hydrogen/deuterium exchange mass spectrometry 
(HXMS) (Ch. 3)

 Phosphoproteomics (Ch. 3)

 Two-photon excitation microscopy (Ch. 4)

 Light-sheet microscopy (Ch. 4)

 Super-resolution microscopy (Ch. 4)
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FIGURE 4-21 Two-photo excitation microscopy allows 
deep penetration for intravital imaging. (a) In conventional 
point-scanning confocal microscopy, absorption of a single 
photon results in an electron jumping to the excited state. 
In  two-photon excitation, two lower-energy photons arrive 
almost instantaneously and induce the electron to jump to 
the excited state. (b) Two-photon microscopy can be used 
to observe cells up to 1 mm deep within a living animal 
 immobilized on the microscope stage. (c) Neurons in a lobster 
were imaged using two-photon excitation microscopy.  
[Part (c) unpublished data from Peter Kloppenburg and Warren R. Zipfel.]



PREFACE       ix

 Three-dimensional culture matrices and 3D printing 
(Ch. 4)

 Ribosome structural comparison across domains shows 
conserved core (Ch. 5) 

 CRISPR–Cas9 system in bacteria and its application in 
genomic editing (Ch. 6)

 Chromosome conformation capture techniques reveal 
topological domains in chromosome territories within the 
nucleus (Ch. 8)

 Mapping of DNase I hypersensitive sites reveals cell 
 developmental history (Ch. 9)

 Long noncoding RNAs involved in X inactivation in 
mammals (Ch. 9)

 ENCODE databases (Ch. 9)

 Improved discussion of mRNA degradation pathways 
and RNA surveillance in the cytoplasm (Ch. 10)

 Nuclear bodies: P bodies, Cajal bodies, histone locus 
bodies, speckles, paraspeckles, and PML nuclear bodies 
(Ch. 10)

 GLUT1 molecular model and transport cycle (Ch. 11)

 Expanded discussion of the pathway for import of  
PTS1-bearing proteins into the peroxisomal matrix (Ch. 13)

 Expanded discussion of Rab proteins and their role in 
vesicle fusion with target membranes (Ch. 14)

 Human G protein–coupled receptors of pharmaceutical 
importance (Ch. 15)

 The role of Smads in chromatin modification (Ch. 16)
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FIGURE 5-19 (a) Translating nucleic acid sequence into amino 
acid sequence requires two steps. Step 1: An  aminoacyl-tRNA 
synthetase couples a specific amino acid to its corresponding 
tRNA. Step 2: The anticodon base-pairs with a codon in the 
mRNA specifying that amino acid. (b) Molecular model of the 
human mitochondrial aminoacyl-tRNA synthetase for Phe in 
complex with tRNAPhe. 
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FIGURE 6-43b Cas9 uses a guide RNA to identify and cleave 
a specific DNA sequence. 



 Pluripotency of mouse ES cells and the potential of dif-
ferentiated cells derived from iPS and ES cells in treating 
various diseases (Ch. 21)

 Pluripotent ES cells in planaria (Ch. 21)

 Cells in intestinal crypts that dedifferentiate to replenish 
intestinal stem cells (Ch. 21)

 Cdc42 and feedback loops that control cell polarity  
(Ch. 21)

 Prokaryotic voltage-gated Na+ channel structure, allow-
ing comparison with voltage-gated K+ channels (Ch. 22) 

 Optogenetics techniques for linking neural circuits with 
behavior (Ch. 22)

 Mechanisms of synaptic plasticity that govern learning 
and memory (Ch. 22)

 Wnt concentration gradients in planarian development 
and regeneration (Ch. 16)

 Inflammatory hormones in adipose cell function and 
obesity (Ch. 16)

 Regulation of insulin and glucagon function in control 
of blood glucose (Ch. 16)

 Use of troponins as an indicator of the severity of a heart 
attack (Ch. 17)

 Neurofilaments and keratins involved in skin integrity, 
epidermolysis bullosa simplex (Ch. 18)

 New structures and understanding of function of dynein 
and dynactin (Ch. 18)

 Expanded discussion of lamins and their role in nuclear 
membrane structure and dynamics during mitosis (Ch. 18)

 Diseases associated with cohesin defects (Ch. 19)

 The Hippo pathway (Ch. 19)

 Spindle checkpoint assembly and nondisjunction and 
aneuploidy in mice; nondisjunction increases with maternal 
age (Ch. 19)

 Expanded discussion of the functions of the extracellular 
matrix and the role of cells in assembling it (Ch. 20)

 Mechanotransduction (Ch. 20)

 Structure of cadherins and their cis and trans interac-
tions (Ch. 20)

 Cadherins as receptors for class C rhinoviruses and asth-
ma (Ch. 20)

 Improved discussion of microfibrils in elastic tissue and 
in LTBP-mediated TGF-β signaling (Ch. 20)

 Tunneling nanotubes (Ch. 20)

 Functions of WAKs in plants as pectin receptors (Ch. 20)
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Pharynx

FIGURE 16-31 Gradients of Wnt and Notum guide 
 regeneration of a head and tail by planaria. [Part (b) Jessica 

 Witchley and Peter Reddien.]

Figure 22-8  Neurogenesis in the adult brain. Newly born 
neurons were labeled with GFP in the dentate gyrus of control 
mice and mice that were allowed to exercise on a running 
wheel. [Chunmei Zhao and Fred H. Gage.]

 Inflammasomes and non-TLR nucleic acid sensors  
(Ch. 23)

 Expanded discussion of somatic hypermutation (Ch. 23)

 Improved discussion of the MHC molecule classes; 
MHC-peptide complexes and their interactions with T-cells 
(Ch. 23)

 Lineage commitment of T cells (Ch. 23)

 Tumor immunology (Ch. 23)

 The characteristics of cancer cells and how they differ 
from normal cells (Ch. 24)

 How carcinogens lead to mutations and how mutations 
accumulate to cancer (Ch. 24)

Medical Connections

Many advances in basic cellular and molecular  biology 
have led to new treatments for cancer and other 

 human diseases. Examples of such medical advances are 
 woven throughout the chapters to give students an apprecia-
tion for the clinical applications of the basic science they are 
learning. Many of these applications hinge on a detailed 
 understanding of multiprotein complexes in cells—complexes 
that catalyze cell movements; regulate DNA  transcription, 

Control Running



 Atherosclerosis, marked by accumulation of cholesterol, 
other lipids, and other biological substances in an artery, is 
responsible for the majority of deaths due to cardiovascular 
disease in the United States (Ch. 7)

 Microsatellite repeats have a tendency to expand and 
can cause neuromuscular diseases such as Huntington dis-
ease and myotonic dystrophy (Ch. 8)

 L1 transposable elements can cause genetic diseases by 
inserting into new sites in the genome (Ch. 8)

 Exon shuffling can result in bacterial resistance to anti-
biotics, a growing challenge in hospitals (Ch. 8)

 The NF1 gene, which is mutated in patients with neurofi-
bromatosis, is an example of how bioinformatics techniques 
can be used to identify the molecular basis of a  genetic dis-
ease (Ch. 8)

 Telomerase is abnormally activated in most cancers  
(Ch. 8)

 TFIIH subunits were first identified based on mutations 
in those subunits that cause defects in DNA repair associ-
ated with a stalled RNA polymerase (Ch. 9)

 HIV encodes the Tat protein, which inhibits termination 
of transcription by RNA polymerase II (Ch. 9)

 Synthetic oligonucleotides are being used in treatment of 
Duchenne muscular dystrophy (DMD)(Ch. 10)

 Mutations in splicing enhancers can cause exon skip-
ping, as in spinal muscular atrophy (Ch. 10)

 Expansion of microsatellite repeats in genes expressed 
in neurons can alter their relative abundance in different 
regions of the central nervous system, resulting in neuro-
logical disorders (Ch. 10)

 Thalassemia commonly results from mutations in 
 globin-gene splice sites that decrease splicing efficiency but 
do not prevent association of the pre-mRNA with snRNPs 
(Ch. 10)

 Genes encoding components of the mTORC1 pathway 
are mutated in many cancers, and mTOR inhibitors com-
bined with other therapies may suppress tumor growth  
(Ch. 10)

 Aquaporin 2 levels control the rate of water resorption 
from urine being formed by the kidney (Ch. 11)

 Certain cystic fibrosis patients are being treated with a 
small molecule that allows a mutant protein to traffic nor-
mally to the cell surface (Ch. 11) 

 SGLT2 inhibitors are in development or have been 
 approved for treatment of type II diabetes (Ch. 11)

 Antidepressants and other therapeutic drugs, as well as 
drugs of abuse, target Na+-powered symporters because of 
their role in the reuptake and recycling of neurotransmitters 
(Ch. 11)

replication, and repair; coordinate metabolism; and connect 
cells to other cells and to proteins and carbohydrates in their 
extracellular environment.

 Stereoisomers of small molecules as drugs—sterically 
pure molecules have different effects from mixtures (Ch. 2)

 Cholesterol is hydrophobic and must be transported by 
lipoprotein carriers LDL and HDL (Ch. 2)

 Essential amino acids must be provided in livestock feed 
(Ch. 2)

 Saturated, unsaturated, and trans fats: their molecular 
structures and nutritional consequences (Ch. 2)

 Protein misfolding and amyloids in neurodegenerative 
diseases such as Alzheimer’s and Parkinson’s (Ch. 3)

 Small molecules that inhibit enzyme activity can be used 
as drugs (aspirin) or in chemical warfare (sarin gas) (Ch. 3)

 Small-molecule inhibitors of the proteasome are used to 
treat certain cancers (Ch. 3)

 Disruptions of GTPases, GAPs, GEFs, and GDIs by 
 mutations and pathogens cause a wide variety of diseases 
(Ch. 3)

 3-D printing technology may be used to grow replace-
ment organs (Ch. 4)

 The high-resolution structures of ribosomes can help 
identify small-molecule inhibitors of bacterial, but not eu-
karyotic, ribosomes (Ch. 5)

 Mutations in mismatch repair proteins lead to hereditary 
nonpolyposis colorectal cancer (Ch. 5)

 Nucleotide excision-repair proteins were identified in pa-
tients with xeroderma pigmentosum (Ch. 5)

 Human viruses HTLV, HIV-1, and HPV initiate infec-
tion by binding to specific cell-surface molecules, and some 
integrate their genomes into the host cell’s DNA (Ch. 5)

 The sickle-cell allele is an example of one that exhibits 
both dominant and recessive properties depending on the 
phenotype being examined (Ch. 6)

 DNA microarrays can be useful as medical diagnostic 
tools (Ch. 6)

 Recombinant DNA techniques are used to mass-produce 
therapeutically useful proteins such as insulin and G-CSF 
(Ch. 6)

 Most cases of genetic diseases are caused by inherited 
rather than de novo mutations (Ch. 6)

 A CFTR knockout mouse line is useful in studying cystic 
fibrosis (Ch. 6)

 ABO blood types are determined by the carbohydrates 
attached to glycoproteins on the surfaces of erythrocytes 
(Ch. 7)
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 Drugs that inhibit the Na+/K+ ATPase in cardiac muscle 
cells are used in treating congestive heart failure (Ch. 11)

 Oral rehydration therapy is a simple, effective means 
of treating cholera and other diseases caused by intestinal 
pathogens (Ch. 11)

 Mutations in CIC-7, a chloride ion channel, result in de-
fective bone resorption characteristic of the hereditary bone 
disease osteopetrosis (Ch. 11)

 The sensitivity of mitochondrial ribosomes to the ami-
noglycoside class of antibiotics, including chloramphenicol, 
can cause toxicity in patients (Ch. 12)

 Mutations and large deletions in mtDNA cause certain 
diseases, such as Leber’s hereditary optic neuropathy and 
Kearns-Sayre syndrome (Ch. 12)

 Cyanide is toxic because it blocks ATP production in mi-
tochondria (Ch. 12)

 Reduction in amounts of cardiolipin, as well as an ab-
normal cardiolipin structure, results in the heart and skele-
tal muscle defects and other abnormalities that characterize 
Barth’s syndrome (Ch. 12)

 Reactive oxygen species are by-products of electron 
transport that can damage cells (Ch. 12)

 ATP/ADP antiporter activity was first studied over 2000 
years ago through the examination of the effects of poison-
ous herbs (Ch. 12)

 There are two related subtypes of thermogenic fat cells 
(Ch. 12)

 A hereditary form of emphysema results from misfolding 
of proteins in the endoplasmic reticulum (Ch. 13)

 Autosomal recessive mutations that cause defective per-
oxisome assembly can lead to several developmental defects 
often associated with craniofacial abnormalities, such as 
those associated with Zellweger syndrome (Ch. 13)

 Certain cases of cystic fibrosis are caused by mutations 
in the CFTR protein that prevent movement of this chloride 
channel from the ER to the cell surface (Ch. 14)

 Study of lysosomal storage diseases has revealed key ele-
ments of the lysosomal sorting pathway (Ch. 14)

 The hereditary disease familial hypercholesterolemia re-
sults from a variety of mutations in the LDLR gene (Ch. 14)

 Therapeutic drugs using the TNFα-binding domain of 
TNFα receptor are used to treat arthritis and other inflam-
matory conditions (Ch. 15)

 Monoclonal antibodies that bind HER2 and thereby 
block signaling by EGF are useful in treating breast tumors 
that overexpress HER2 (Ch. 15)

 The agonist isoproterenol binds more strongly to epi-
nephrine-responsive receptors on bronchial smooth muscle 

cells than does epinephrine, and is used to treat bronchial 
asthma, chronic bronchitis, and emphysema (Ch. 15)

 Some bacterial toxins (e.g., Bordetella pertussis, Vibrio 
cholerae, certain strains of E. coli) catalyze a modification 
of a G protein in intestinal cells, increasing intracellular 
cAMP, which leads to loss of electrolytes and fluids (Ch. 15)

 Nitroglycerin decomposes to NO, a natural signaling 
molecule that, when used to treat angina, increases blood 
flow to the heart (Ch. 15)

 PDE inhibitors elevate cGMP in vascular smooth muscle 
cells and have been developed to treat erectile dysfunction 
(Ch. 15)

 Many tumors contain inactivating mutations in either 
TGF-β receptors or Smad proteins and are resistant to 
growth inhibition by TGF-β (Ch. 16)

 Epo and G-CSF are used to boost red blood cells and 
neutrophils, respectively, in patients with kidney disease 
and during certain cancer therapies that affect blood cell 
formation in the bone marrow (Ch. 16)

 Many cases of SCID result from a deficiency in the IL-2 
receptor gamma chain and can be treated by gene therapy 
(Ch. 16)

 Mutant Ras proteins that bind but cannot hydrolyze 
GTP, and are therefore locked in an active GTP-bound 
state, contribute to oncogenic transformation (Ch. 16)

 Potent and selective inhibitors of Raf are being clinically 
tested in patients with melanomas caused by mutant Raf 
proteins (Ch. 16)

 The deletion of the PTEN gene in multiple types of ad-
vanced cancers results in the loss of the PTEN protein, con-
tributing to the uncontrolled growth of cells (Ch. 16)

 High levels of free β-catenin, caused by aberrant hyper-
active Wnt signaling, are associated with the activation of 
growth-promoting genes in many cancers (Ch. 16) 

 Inappropriate activation of Hh signaling associated with 
primary cilia is the cause of several types of tumors (Ch. 16)

 Increased activity of ADAMs can promote cancer devel-
opment and heart disease (Ch. 16)

 The brains of patients with Alzheimer’s disease accumu-
late amyloid plaques containing aggregates of the Aβ42 pep-
tide (Ch. 16)

 Diabetes mellitus is characterized by impaired regulation 
of blood glucose, which can lead to major complications if 
left untreated (Ch. 16)

 Hereditary spherocytic anemias can be caused by muta-
tions in spectrin, band 4.1, and ankyrin (Ch. 17)

 Duchenne muscular dystrophy affects the protein dystro-
phin, resulting in progressive weakening of skeletal muscle 
(Ch. 17)
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 Hypertrophic cardiomyopathies result from various 
 mutations in proteins of the heart contractile machinery 
(Ch. 17)

 Blood tests that measure the level of cardiac-specific tro-
ponins are used to determine the severity of a heart attack 
(Ch. 17)

 Some drugs (e.g., colchicine) bind tubulin dimers and re-
strain them from polymerizing into microtubules, whereas 
others (e.g., taxol) bind microtubules and prevent depoly-
merization (Ch. 18)

 Defects in LIS1 cause Miller-Dieker lissencephaly in ear-
ly brain development, leading to abnormalities (Ch. 18)

 Some diseases, such as ADPKD and Bardet-Biedl syn-
drome, have been traced to defects in primary cilia and 
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assembly (Ch. 20)

 Connections between the extracellular matrix and cyto-
skeleton are defective in muscular dystrophy (Ch. 20)
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 cyclosporine-cyclophilin complex, thus enabling successful 
allogenic tissue transplantation (Ch. 23)
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C H A P T E R

Two cells in mortal combat: a malaria parasite invading a human red 

blood cell. [Courtesy Dr. Stuart Ralph, University of Melbourne.]

1
Molecules, Cells, 
and Model 
Organisms

OU TLINE

1.1 The Molecules of Life

1.2 Prokaryotic Cell Structure and Function

1.3 Eukaryotic Cell Structure and Function

1.4 Unicellular Eukaryotic Model Organisms

1.5  Metazoan Structure, Differentiation, and Model 

Organisms

Nothing in biology makes sense except in the light of 
evolution.

—Theodosius Dobzhansky, 1973, essay in  
American Biology Teacher 35:125–129

Biology is a science fundamentally different from physics or 
chemistry, which deal with unchanging properties of matter 
that can be described by mathematical equations. Biological 
systems, of course, follow the rules of chemistry and physics, 
but biology is a historical science, as the forms and structures 
of the living world today are the results of billions of years of 
evolution. Through evolution, all organisms are related in a 
family tree extending from primitive single-celled organisms 
that lived in the distant past to the diverse plants, animals, 
and microorganisms of the present era (Figure 1-1, Table 1-1).  
The great insight of Charles Darwin (Figure 1-2) was the 
principle of natural selection: organisms vary randomly and 
compete within their environment for resources. Only those 
that survive and reproduce are able to pass down their ge-
netic traits.

At first glance, the biological universe does appear 
amazingly diverse—from tiny ferns to tall fir trees, from 
single-celled bacteria and protozoans visible only under a mi-
croscope to multicellular animals of all kinds. Indeed, cells 
come in an astonishing variety of sizes and shapes (Figure 1-3).  
Some move rapidly and have fast-changing structures, as we 
can see in movies of amoebae and rotifers. Others are largely 
stationary and structurally stable. Oxygen kills some cells but is 
an absolute requirement for others. Most cells in multicellular 
organisms are intimately involved with other cells. Although 
some unicellular organisms live in isolation (Figure 1-3a),  
others form colonies or live in close association with other 
types of organisms (Figure 1-3b, d), such as the bacteria that 
help plants to extract nitrogen from the air or the bacteria 
that live in our intestines and help us digest food.

Yet the bewildering array of outward biological forms 
overlies a powerful uniformity: thanks to our common an-
cestry, all biological systems are composed of cells containing 
the same types of chemical molecules and employing similar 
principles of organization at the cellular level. Although the 
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basic kinds of biological molecules have been conserved dur-
ing the billions of years of evolution, the patterns in which 
they are assembled to form functioning cells and organisms 
have undergone considerable change.

We now know that genes, which chemically are composed 
of deoxyribonucleic acid (DNA), ultimately define biological 
structure and maintain the integration of cellular function. 
Many genes encode proteins, the primary molecules that make 
up cell structures and carry out cellular activities. Alterations 
in the structure and organization of genes, or mutations, pro-
vide the random variation that can alter biological structure 
and function. While the vast majority of random mutations 
have no observable effect on a gene’s or protein’s function, 
many are deleterious, and only a few confer an evolution-
ary advantage on the organism. In all organisms, mutations 
in DNA are constantly occurring, allowing over time the 
small alterations in cellular structures and functions that may 
prove to be advantageous. Entirely new cellular structures are 
rarely created; more often, existing cellular structures undergo 
changes that better adapt the organism to new circumstances. 
Slight changes in a protein can cause important changes in its 
function or abolish its function entirely.

For instance, in a particular organism, one gene may 
randomly become duplicated, after which one copy of the 

gene and its encoded protein retain their original func-
tion while, over time, the second copy of the gene mutates 
such that its protein takes on a slightly different or even a 
totally new function. During the evolution of some organ-
isms, the entire genome became duplicated, allowing the 
second copies of many genes to undergo mutations and 
acquire new functions. The cellular organization of or-
ganisms plays a fundamental role in this process because 
it allows these changes to come about by small alterations 
in previously evolved cells, giving them new abilities. The 
result is that closely related organisms have very similar 
genes and proteins as well as similar cellular and tissue 
organizations.

Multicellular organisms, including the human body, con-
sist of such closely interrelated elements that no single ele-
ment can be fully appreciated in isolation from the others. 
Organisms contain organs, organs are composed of tissues, 
tissues consist of cells, and cells are formed from molecules 
(Figure 1-4). The unity of living systems is coordinated by 
many levels of interrelationship: molecules carry messages 
from organ to organ and cell to cell, and tissues are delin-
eated and integrated with other tissues by molecules secreted 
by cells. Generally all the levels into which we fragment bio-
logical systems interconnect.

EUKARYOTA

BACTERIA

ARCHAEA
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(e.g., Plasmodium)
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(e.g., Trypanosoma)

Parabasalia
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FIGURE 11 All living organisms descended from a common 

 ancestral cell. All organisms, from simple bacteria to complex mam-

mals, probably evolved from a common single-celled ancestor. This 

family tree depicts the evolutionary relationships among the three 

major lineages of organisms. The structure of the tree was initially 

ascertained from morphological criteria: creatures that look alike were 

put close together. More recently, the sequences of DNA and proteins 

found in organisms have provided more information-rich criteria for 

assigning relationships. The greater the similarities in these macro-

molecular sequences, the more closely related organisms are thought 

to be. The trees based on morphological comparisons and the fossil 

record generally agree well with those based on molecular data. [Data 

from J. R. Brown, 2005, “Universal tree of life,” in Encyclopedia of Life Sciences, 

Wiley InterScience (online).]
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TABLE 11 Timeline for Evolution of Life on Earth, as Determined from the Fossil Record

4600 million years ago The planet Earth forms from material revolving around the young Sun.

∼3900–2500 million  
years ago

Cells resembling prokaryotes appear. These first organisms are chemoautotrophs: they use 
 carbon dioxide as a carbon source and oxidize inorganic materials to extract energy.

3500 million years ago Lifetime of the last universal ancestor; the split between Eubacteria and Archaea occurs.

3000 million years ago Photosynthesizing cyanobacteria evolve; they use water as a reducing agent, thereby producing 
oxygen as a waste product.

1850 million years ago Unicellular eukaryotes appear.

1200 million years ago Simple multicellular organisms evolve, mostly consisting of cell colonies of limited complexity.

580–500 million years ago Most modern phyla of animals begin to appear in the fossil record during the Cambrian 
 explosion.

535 million years ago Major diversification of living things in the oceans: chordates, arthropods (e.g., trilobites, 
 crustaceans), echinoderms, mollusks, brachiopods, foraminifers, radiolarians, etc.

485 million years ago First vertebrates with true bones (jawless fishes) evolve.

434 million years ago First primitive plants arise on land.

225 million years ago Earliest dinosaurs (prosauropods) and teleost fishes appear.

220 million years ago Gymnosperm forests dominate the land; herbivores grow to huge sizes.

215 million years ago First mammals evolve.

65.5 million years ago The Cretaceous-Tertiary extinction event eradicates about half of all animal species, including 
all of the dinosaurs.

6.5 million years ago First hominids evolve.

2 million years ago First members of the genus Homo appear in the fossil record.

350 thousand years ago Neanderthals appear.

200 thousand years ago Anatomically modern humans appear in Africa.

30 thousand years ago Extinction of Neanderthals.

FIGURE 12 Charles Darwin (1809–1882). Four years 

after his epic voyage on HMS Beagle, Darwin had already 

begun formulating in private notebooks his concept of 

natural selection, which would be published in his Origin of 
Species (1859). [Charles Darwin on the Galapagos Islands by Howat, 

Andrew (20th century)/Private Collection/© Look and Learn/

Bridgeman Images.]
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To learn about biological systems, however, we must ex-
amine one small portion of a living system at a time. The bi-
ology of cells is a logical starting point because an organism 
can be viewed as consisting of interacting cells, which are 
the closest thing to autonomous biological units that exist. 
The last common ancestor of all life on Earth was a single 
cell (see Figure 1-1), and at the cellular level all life is re-
markably similar. All cells use the same molecular building 
blocks, similar methods for the storage, maintenance, and 
expression of genetic information, and similar processes of 
energy metabolism, molecular transport, signaling, develop-
ment, and structure.

In this chapter, we introduce the common features of 
cells. We begin with a brief discussion of the principal small 

(a)

1 μm

(b)

1 μm

(c)

10 μm

(d)

100 μm

(e)

20 μm

(f)

20 μm

FIGURE 13 Cells come in an astounding assortment of shapes 

and sizes. Some of the morphological variety of cells is illustrated 

in these photographs. In addition to morphology, cells differ in their 

ability to move, internal organization (prokaryotic versus eukaryotic 

cells), and metabolic activities. (a) Eubacteria: Lactococcus lactis, which 

are used to produce cheese such as Roquefort, Brie, and Camembert. 

Note the dividing cells. (b) A mass of archaeans (Methanosarcina) that 

produce their energy by converting carbon dioxide and hydrogen gas 

to methane. Some species that live in the rumens of cattle give rise to 

>150 liters of methane gas each day. (c) Human blood cells, shown in 

false color. The red cells are oxygen-bearing erythrocytes, the white 

cells (leukocytes) are part of the immune system and fight infection, 

and the green cells are platelets that plug wounds and contain sub-

stances to initiate blood clotting. (d) A colonial single-celled green alga, 

Volvox aureus. The large spheres are made up of many individual cells, 

visible as blue or green dots. The yellow masses inside are daughter 

colonies, each made up of many cells. (e) A single Purkinje neuron 

of the cerebellum, which can form more than a hundred thousand 

 connections with other cells through its branched network of den-

drites. The cell was made visible by introduction of a green fluorescent 

protein; the cell body is the bulb at the upper right. (f) Plant cells are 

fixed firmly in place in vascular plants, supported by a rigid cellulose 

skeleton. Spaces between the cells are joined into tubes for transport 

of water and food. [Part (a) Gary Gaugler/Science Source. Part (b) Power and 

Syred/Science Source. Part (c) Science Source. Part (d) micro_photo/iStock-

photo/Getty Images. Part (e) Courtesy of Dr. Helen M. Blau (Stanford University 

School of Medicine) and Dr. Clas B. Johansson (Karolinska Institutet). Part (f) 

Biophoto Associates/Science Source.]

molecules and macromolecules found in biological systems. 
Next we discuss the fundamental aspects of cell structure and 
function that are conserved in present-day organisms, focus-
ing first on prokaryotic organisms—single-celled organisms 
without a nucleus—and their uses in studying the basic mol-
ecules of life. Then we discuss the structure and function of 
eukaryotic cells—cells with a defined nucleus—focusing on 
their many organelles. This discussion is followed by a sec-
tion describing the use of unicellular eukaryotic organisms in 
investigations of molecular cell biology, focusing on yeasts 
and the parasite that causes malaria.

We now have the complete sequences of the genomes 
of several thousand metazoans (multicellular animals), and 
these sequences have provided considerable insight into the 
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FIGURE 14 Living systems such as the human body consist of 

closely interrelated elements. (a) The surface of the hand is covered 

by a living organ, skin, that is composed of several layers of tissue. 

(b) An outer covering of hard, dead skin cells protects the body from 

injury, infection, and dehydration. This layer is constantly renewed by 

living epidermal cells, which also give rise to hair and fur in animals. 

Deeper layers of muscle and connective tissue give skin its tone 

and firmness. (c) Tissues are formed through subcellular adhesion 

 structures (desmosomes and hemidesmosomes) that join cells to one 

another and to an underlying layer of supporting fibers. (d) At the 

heart of cell-cell adhesion are its structural components: phospholipid 

molecules that make up the cell-surface membrane, and large protein 

molecules. Protein molecules that traverse the cell membrane often 

form strong bonds with internal and external fibers made of multiple 

proteins.

evolution of genes and organisms. The final section in this 
chapter shows us how this information can be used to refine 
the evolutionary relationships among organisms as well as 
our understanding of human development. Indeed, biolo-
gists use evolution as a research tool: if a gene and its protein 
have been conserved in all metazoans but are not found in 
unicellular organisms, the protein probably has an impor-
tant function in all metazoans and thus can be studied in 
whatever metazoan organism is most suitable for the inves-
tigation. Because the structure and function of many types 
of metazoan cells is also conserved, we now understand the 
structure and function of many cell types in considerable de-
tail, including muscle and liver cells and the sheets of epithe-
lial cells that line the intestine and form our skin. But other 
cells—especially the multiple types that form our nervous 
and immune systems—still remain mysterious; much impor-
tant cell biological experimentation is needed on these and 
other cell systems and organs that form our bodies.

1.1 The Molecules of Life
While large polymers are the focus of molecular cell biology, 
small molecules are the stage on which all cellular processes 
are set. Water, inorganic ions, and a wide array of relatively 
small organic molecules (Figure 1-5) account for 75 to 80 
percent of living matter by weight, and water accounts for 
about 75 percent of a cell’s volume. These small molecules, 
including water, serve as substrates for many of the reactions 
that take place inside the cell, including energy metabolism 
and cell signaling. Cells acquire these small molecules in dif-
ferent ways. Ions, water, and many small organic molecules 
are imported into the cell (see Chapter 11); other small mol-
ecules are synthesized within the cell, often by a series of 
chemical reactions (see Chapter 12).

Even in the structures of many small molecules, such as 
sugars, vitamins, and amino acids, we see the footprint of 
evolution. For example, all amino acids save glycine have an 
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stereoisomer instead of the other. How these selections hap-
pened is unknown, but now these choices are locked in place.

An important and universally conserved small  molecule 
is adenosine triphosphate (ATP), which stores readily 
available chemical energy in two of its chemical bonds  
(Figure 1-6). When one of these energy-rich bonds in ATP 
is broken, forming ADP (adenosine diphosphate), the re-
leased energy can be harnessed to power energy-requiring 
processes such as muscle contraction or protein biosynthesis. 
To obtain energy for making ATP, all cells break down food 
molecules. For instance, when sugar is degraded to carbon 
dioxide and water, the energy stored in the sugar molecule’s 
chemical bonds is released, and much of it can be “captured” 
in the energy-rich bonds in ATP. Bacterial, plant, and animal 
cells can all make ATP by this process. In addition, plants 
and a few other organisms can harvest energy from sunlight 
to form ATP in photosynthesis.

Other small molecules (e.g., certain hormones and growth 
factors) act as signals that direct the activities of cells (see Chap-
ters 15 and 16), and neurons (nerve cells) communicate with 
one another by releasing and sensing certain small signaling 
molecules (see Chapter 22). The powerful physiological effects 
of a frightening event, for example, come from the instanta-
neous flooding of the body with the small-molecule hormone 
adrenaline, which mobilizes the “fight or flight” response.

Certain small molecules (monomers) can be joined 
to form polymers (also called macromolecules) through 

FIGURE 15 Some of the many small molecules found in cells. 

Only the L-forms of amino acids such as serine are incorporated into 

proteins, not their D-mirror images; only the D-form of glucose, not its 

L-mirror image, can be metabolized to carbon dioxide and water.

Sodium Water

Oleic acid

L-serine D-serine

L-glucose D-glucose

FIGURE 16 Adenosine triphosphate (ATP) is the most common 

molecule used by cells to capture, store, and transfer energy. ATP 

is formed from adenosine diphosphate (ADP) and inorganic phosphate 

(Pi ) by photosynthesis in plants and by the breakdown of sugars and 

fats in most cells. The energy released by the splitting (hydrolysis) of Pi 

from ATP drives many cellular processes.
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asymmetric carbon atom, yet only the l-stereoisomer, never 
the d-stereoisomer, is incorporated into proteins. Similarly, 
only the d-stereoisomer of glucose is invariably found in 
cells, never the mirror-image l-stereoisomer (see Figure 1-5). 
At an early stage of biological evolution, our common cellu-
lar ancestor evolved the ability to catalyze reactions with one 



1.1 The Molecules of Life 7

Glutamine synthetase

Insulin

Hemoglobin Immunoglobulin

Adenylate
kinase

DNA molecule

10 nm = 100 Å

RNA molecule

Lipid bilayer

FIGURE 17 Models of some representative proteins drawn to a 

common scale and compared with a small portion of a lipid bilayer, 

a DNA molecule, and an RNA molecule. Each protein has a defined 

three-dimensional shape held together by numerous chemical bonds. 

The illustrated proteins include enzymes (glutamine synthetase and 

adenylate kinase), an antibody (immunoglobulin), a hormone (insulin), 

and the blood’s oxygen carrier (hemoglobin). [Glutamine synthetase 

data from H. S. Gill and D. Eisenberg, 2001, Biochemistry 40:1903–1912, PDB 

ID 1fpy. Insulin data from E. N. Baker et al., 1988, Phil. Trans. R. Soc. Lond. B Biol. 

Sci. 319:369–456, PDB ID 4ins. Hemoglobin data from G. Fermi et al., 1984, J. 

Mol. Biol. 175:159–174, PDB ID 2hhb. Immunoglobulin data from L. J. Harris et 

al., 1998, J. Mol. Biol. 275:861–872, PDB ID 1igy. Adenylate kinase data from G. 

Bunkoczi et al., PDB ID 2c9y.]

repetition of a single type of covalent chemical-linkage 
 reaction. Cells produce three types of large macromolecules: 
polysaccharides, proteins, and nucleic acids. Sugars, for 
example, are the monomers used to form polysaccharides. 
 Different polymers of d-glucose form cellulose, an important 
component of plant cell walls, and glycogen, a storage form 
of glucose found in liver and muscle. The cell is careful to 
provide the appropriate mix of small molecules needed as 
precursors for synthesis of macromolecules.

Proteins Give Cells Structure  
and Perform Most Cellular Tasks

Proteins, the workhorses of the cell, are the most abundant 
and functionally versatile of the cellular macromolecules. 
Cells string together 20 different amino acids in linear 
chains, each with a defined sequence, to form proteins (see 
Figure 2-14), which commonly range in length from 100 to 
1000 amino acids. During or just after its polymerization, a 
linear chain of amino acids folds into a complex shape, con-
ferring a distinctive three-dimensional structure and function 
on the protein (Figure 1-7). Humans obtain amino acids ei-
ther by synthesizing them from other molecules or by break-
ing down proteins that we eat.

Proteins have a variety of functions in the cell. Many 
proteins are enzymes, which accelerate (catalyze) chemical 
reactions involving small molecules or macromolecules (see 
Chapter 3). Certain proteins catalyze steps in the synthesis of 
all proteins; others catalyze synthesis of macromolecules such 

as DNA and RNA. Cytoskeletal proteins serve as structural 
components of a cell; for example, by forming an internal skel-
eton. Other proteins associated with the cytoskeleton power 
the movement of subcellular structures such as chromosomes, 
and even of whole cells, by using energy stored in the chemical 
bonds of ATP (see Chapters 17 and 18). Still other proteins 
bind adjacent cells together or form parts of the extracellular 
matrix (see Figure 1-4). Proteins can be sensors that change 
shape as temperature, ion concentrations, or other properties 
of the cell change. Many proteins that are embedded in the 
cell-surface (plasma) membrane import and export a variety 
of small molecules and ions (see Chapter 11). Some proteins, 
such as insulin, are hormones; others are hormone receptors 
that bind their target protein or small molecule and then gen-
erate a signal that regulates a specific aspect of cell function. 
Other important classes of proteins bind to specific segments 
of DNA, turning genes on or off (see Chapter 9). In fact, much 
of molecular cell biology consists of studying the function of 
specific proteins in specific cell types.

Nucleic Acids Carry Coded Information  
for Making Proteins at the Right Time and Place

The macromolecule that garners the most public attention 
is deoxyribonucleic acid (DNA), whose functional properties 
make it the cell’s “master molecule.” The three-dimensional 
structure of DNA, first proposed by James D. Watson and 
Francis H. C. Crick in 1953, consists of two long  helical 
strands that are coiled around a common axis to form a 
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double helix (Figure 1-8). The double-helical structure of 
DNA, one of nature’s most magnificent constructions, is crit-
ical to the phenomenon of heredity, the transfer of genetically 
determined characteristics from one generation to the next.

DNA strands are composed of monomers called nucleo-
tides; these monomers are often referred to as bases because 
they contain cyclic organic bases (see Chapter 5). Four dif-
ferent nucleotides, abbreviated A, T, C, and G, are joined to 
form a DNA strand, with the base parts projecting inward 
from the backbone of the strand. Two strands bind together 
via the bases and twist to form a double helix. Each DNA 
double helix has a simple construction: wherever one strand 
has an A, the other strand has a T, and each C is matched 
with a G (see Figure 1-8). This complementary matching of 
the two strands is so strong that if complementary strands 
are separated under the right salt concentration and temper-
ature conditions, they will spontaneously zip back together. 
This property is critical for DNA replication and inheritance, 
as we will learn in Chapter 5, and also underlies many of the 
techniques for studying DNA molecules that are detailed in 
Chapter 6.

The genetic information carried by DNA resides in its 
sequence, the linear order of nucleotides along a strand. 
Specific segments of DNA, termed genes, carry instructions 
for making specific proteins. Commonly, genes contain two 
parts: the coding region specifies the amino acid sequence of 
a protein; the regulatory region binds specific proteins and 
controls when and in which cells the gene’s protein is made.

Most bacteria have a few thousand protein-coding genes; 
yeasts and other unicellular eukaryotes have about 5000. 
Humans and other metazoans have between 13,000 and 
23,000, while many plants have more. As we discuss later 
in this chapter, many of the genes in bacteria specify the se-
quences of proteins that catalyze reactions that occur uni-
versally, such as the metabolism of glucose and the synthesis 
of nucleic acids and proteins. These genes, and the proteins 
encoded by them, are conserved throughout all living organ-
isms, and thus studies on the functions of these genes and 
proteins in bacterial cells have yielded profound insights into 
these basic life processes. Similarly, many genes in unicellular 
eukaryotes such as yeasts encode proteins that are conserved 
throughout all eukaryotes; we will see how yeasts have been 
used in studies of processes such as cell division that have 
yielded profound insights into human diseases such as  cancer.

How is information stored in the sequence of DNA 
used? Cells use two processes in series to convert the coded 
information in DNA into proteins (Figure 1-9). In the first 
process, called transcription, the protein-coding region of 
a gene is copied into a single-stranded ribonucleic acid 
(RNA) whose sequence is the same as one of the two in the 
double-stranded DNA. A large enzyme, RNA polymerase, 
catalyzes the linkage of nucleotides into an RNA chain 
using DNA as a template. In eukaryotic cells, the initial 
RNA product is processed into a smaller messenger RNA 
(mRNA) molecule, which moves out of the nucleus to the 
cytoplasm, the region of the cell outside of the nucleus. 
Here the ribosome, an enormously complex molecular 
 machine composed of both RNA and proteins, carries out 
the second process, called translation. During translation, 
the ribosome assembles and links together amino acids in 
the precise order dictated by the mRNA sequence according 
to the nearly universal genetic code. We examine the cell 
components that carry out transcription and translation in 
detail in Chapter 5.

In addition to its role in transferring information from 
nucleus to cytoplasm, RNA can serve as a framework for 
building a molecular machine. The ribosome, for example, is 
built of four RNA chains that bind to more than 50 proteins 
to make a remarkably precise and efficient mRNA reader 
and protein synthesizer. While most chemical reactions in 
cells are catalyzed by proteins, a few, such as the formation 
by ribosomes of the peptide bonds that connect amino acids 
in proteins, are catalyzed by RNA molecules.

Well before the entire human genome was sequenced, it 
was apparent that only about 10 percent of human DNA 
consists of protein-coding genes, and for many years the re-
maining 90 percent was considered “junk DNA”! In recent 
years, we’ve learned that much of the so-called junk DNA 
is actually copied into thousands of RNA molecules that, 
though they do not encode proteins, serve equally important 
purposes in the cell (see Chapter 10). At present, however, 
we know the function of only a very few of these abundant 
noncoding RNAs.

Like enzymes, certain RNA molecules, termed ribozymes, 
catalyze chemical reactions, as exemplified by the RNA in-
side a ribosome. Many scientists support the RNA world 
hypothesis, which proposes that RNA molecules that could 
replicate themselves were the precursors of current life forms; 

FIGURE 18 DNA consists of two complemen-

tary strands wound around each other to form a 

double helix. The double helix is stabilized by weak 

hydrogen bonds between the A and T bases and 

between the C and G bases. During replication, the 

two strands are unwound and used as templates 

to produce complementary strands. The outcome 

is two identical copies of the original double helix, 

each containing one of the original strands and one 

new daughter (complementary) strand.
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billions of years ago, the RNA world gradually evolved into 
the DNA, RNA, and protein world of today’s organisms.

All organisms must control when and where their genes 
are transcribed. Nearly all the cells in our bodies contain 
the full set of human genes, but in each cell type only some 
of these genes are active, or turned on, and used to make 
proteins. For instance, liver cells produce some proteins that 
are not produced by kidney cells, and vice versa. Moreover, 
many cells respond to external signals or changes in exter-
nal conditions by turning specific genes on or off, thereby 
adapting their repertoire of proteins to meet current needs. 
Such control of gene activity depends on DNA-binding 
proteins called transcription factors, which bind to specific 
sequences of DNA and act as switches, either activating or 
repressing transcription of particular genes, as discussed in 
Chapter 9.

Phospholipids Are the Conserved Building 
Blocks of All Cellular Membranes

In all organisms, cellular membranes are composed primar-
ily of a bilayer (two layers) of phospholipid molecules. Each 
of these bipartite molecules has a “water-loving” (hydro-
philic) “head” and a “water-hating” (hydrophobic) “tail.” 
The two phospholipid layers of a membrane are oriented 
with all the hydrophilic heads directed toward the inner or 
outer surfaces of the membrane and the hydrophobic tails 
buried within its interior (Figure 1-10). Smaller amounts of 
other lipids, such as cholesterol, are inserted into this phos-
pholipid framework. Cellular membranes are extremely thin 
relative to the size of a cell. If you magnify a bacterium or 
yeast cell about 10,000 times to the size of a soccer ball, the 
plasma membrane is about as thick as a sheet of paper!

Phospholipid membranes are impermeable to water, all 
ions, and virtually all hydrophilic small molecules. Thus 
each membrane in each cell also contains groups of proteins 
that allow specific ions and small molecules to cross. Other 
membrane proteins serve to attach the cell to other cells or to 
polymers that surround it; still others give the cell its shape 
or allow its shape to change. We will learn more about mem-
branes and how molecules cross them in Chapters 7 and 11.

New cells are always derived from parental cells by cell 
division. We’ve seen that the synthesis of new DNA mol-
ecules is templated by the two strands of the parental DNA 
such that each daughter DNA molecule has the same se-
quence as the parental one. In parallel, new membranes are 
made by incorporation of lipids and proteins into existing 
membranes in the parental cell and divided between daugh-
ter cells by fission. Thus membrane synthesis, like DNA syn-
thesis, is templated by a parental structure.

FIGURE 19 The information encoded in DNA is converted into 

the amino acid sequences of proteins by a multistep process.  

Step 1 : Transcription factors and other proteins bind to the regulatory 

regions of the specific genes they control to activate those genes. Step 

2 : RNA polymerase begins transcription of an activated gene at a spe-

cific location, the start site. The polymerase moves along the DNA, link-

ing nucleotides into a single-stranded pre-mRNA transcript using one 

of the DNA strands as a template. Step 3 : The transcript is processed to 

remove noncoding sequences. Step 4 : In a eukaryotic cell, the mature 

mRNA moves to the cytoplasm, where it is bound by ribosomes that 

read its sequence and assemble a protein by chemically linking amino 

acids into a linear chain.
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FIGURE 110 The watery interior of cells is surrounded by the 

plasma membrane, a two-layered shell of phospholipids. The 

phospholipid molecules are oriented with their hydrophobic fatty 

acyl chains (black squiggly lines) facing inward and their hydrophilic 

head groups (white spheres) facing outward. Thus both sides of the 

membrane are lined by head groups, mainly charged phosphates, 

adjacent to the watery spaces inside and outside the cell. All biologi-

cal membranes have the same basic phospholipid bilayer structure. 

Cholesterol (red) and various proteins are embedded in the bilayer. 

The interior space is actually much larger relative to the volume of the 

plasma membrane than is depicted here.
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